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The results for s~ium-potassi~ are plotted on Subbot~‘s 
curve in Fig. 4. Agreement is fairly good although the present 
sodium-potassium results generally lie below Subbotin’s 
curve at l?rger values of y”/yz,:. The sodium-potassium 
results would fit Subbotin’s curve slightly better if II/ is 
defined in terms of the RMS of the turbulent temperature 
fluctuation rather than the mean square value. 

The effect of different fluid Prandtl number on the 
turbulent temperature fluctuations is shown in normalized 
form in Fig. 5 with Laufer’s [lo] velocity data shown for 
comparison. As the Prandtl number decreases, the molecular 
conduction effects are enhanced. The region of interplay 
between the conduction and convection effects therefore 
dominate the flow field, evident by the broad maximum 
exhibited in scum-potage temperature data, with the 
opposite true for large Prandtl number fluids such as 
ethylene glycol. Only in the case of air, with a fluid Prandtl 
number of 0.704, are the temperature and velocity fluctua- 
tion curves similar, as expected from analogy models. 
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NOMENCLATURE f 12, view factor to allow for interchange between 
As IS well known, the view factor between two bodies is surfaces 1 and 2, see equations (4) and (5) ; 

A, surface area of hemisphere [m”] ; h radiation heat transfer coefficient [kcal/m2h “C] ; 
AC, cross sectional area of sphere [m*] ; h;; based on A, see equation (9); 

Fij+ view factor from surface i to j; P. emissivity of hemisphere; 
F 111 view factor from surface 1 to 2, including the Q, rate of heat transfer by radiation [kcal,%]; 

effect of refractory surfaces, see equation (3); I: absolute t~~rature E”K] ; 
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T,, T,, of surfaces 1 and 2; 
‘i: =(T, + T,)/2; 
X, radius [ml. 

Suppose a unit model of radiant heat transfer in beds 
packed with uniformly sized spherical particles is con- 
sidered as the two hemispheres (of m = 1) circumscribed 
with a diffusively reflective cylindrical wall, R. The view 

Greek symbols factor F, x with reflective wall is 

B, Y, 6,& angles ; 
0, Stefar-Boltzmann constant, 4.88 x 10m8 [kcal/m2 

h ‘K4]. 
F,, = F,, +#_ 

RR 

expressed as 

AiF,, = IF,,-,,dA, 

= 
ss 

cos +i cos & dA, dA, 

llLZ 
(1) 

I, A1 

where dA, and dA, represent surface elements of the two 
spheres (radius Xi and Xr, respectively), L is the distance 
between the two elements, the 6s are the angles between 
the respective normals to the surface elements and the line 
L, FdA,_-AI is the radiation view factor from the surface 
element dA, to the whole area A,, and F,, is that from A, to 

A,. 
For the geometric configuration of the two hemispheres 

shown in Fig. l(a), the F,,,_,, is evaluated by measuring 
the projected’area PS on the tangential plane MN. 

+ b 
an ( 

e[J(a’ - e’)] + uz sin-i 4 
> a 

where y = sin-i &in2 pi - cosz /Ii tan* fir); 

a = +[cosBi cosg, - cos(8i * /q-j; 

b = sin&; 

e = cosy - cos~,cosfi,; 

m = X,/X, ; 

/Ii = cos-i 
2(1 + m) (1 - sin 6) 

(1 +m)2 + 1 - 2(1 +m)sinf3 1 ’ 
/I* = cos-l 

(1 +m)costl 

J[(l + m)2 + 1 - 2(1 + m) sin el ’ 

ec= tan-1 
J[(l + fz - 11; 

(2) 

(k :minussignfor0 = 0 N 0,andplussignfore = 9, N n/2). 
Figure l(b) shows the computed values of FdAI_d2, from ( b) 

which Fir’s are evaluated as 
FIG. 1. Coordinates and view factors between two hemi- 

spheres in contact. 

X,/X, 1 1.5 2 3 5 10 
Considering F ia + F,, = 1 and F,, + 2F,, = 1, one 

F 12 0.1511 0.2191 0.2734 0.3520 04438 0.5424 obtains F,, = @576. 
The radiation heat exchange Q between hemisphere 1 
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(uniform surface temperature T,) and hemisphere 2 (uniform 
surface temperature T2) is expressed as 

Q = AP,, 4G - 73. (4) 

The overall exchangmg factor F12 is [l] 

where P is the emissivity of the surface of hemispheres. Chen and 2 
In terms of radiant heat-transfer coefficient h,, equation a and b are experimental 

(4) is approximately expressed as 
Churchill [6] a + 2b coefficients 

2 
Q = 4hXT, - T2) 

h, = 4c+,,T3 

where T = (TI + T,)/2 in “K. 

(6) 

(7) 

This work 
(2/p) - 0.264 

2 in numerator is the ratio 
AetA, 
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Most of the expressions for radiation heat-transfer 
coefficient have been defined on the basis of cross sectional 
area A,. 

Q = A&U’, - ‘4) 
h; = 4a$T3 

(9) 
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NOMENCLATURE 

Br, Brinkmann number, 
!.&u; 

k,(T, - Q); 

c,, skin fraction coefftcient, 2r,/p,Ui ; 

t Lewis Research Center, Cleveland, Ohio, U.S.A. 
$ North Carolina State University, Raleigh, North 

Carolina, U.S.A. 

h, distance between upper and lower plates; 
k, thermal conductivity; 

4wh Nu, Nusselt number, 
kAT, - T,) 

= -4:; 

p, pressure; 
4. heat flux ; 

Re, 
P,udt 

Reynolds number, -; 
Pv 


